Bipartite Ramsey numbers involving stars, stripes and trees
نویسندگان
چکیده
The Ramsey number R(m,n) is the smallest integer p such that any blue-red colouring of the edges of the complete graph Kp forces the appearance of a blue Km or a red Kn. Bipartite Ramsey problems deal with the same questions but the graph explored is the complete bipartite graph instead of the complete graph. We investigate the appearance of simpler monochromatic graphs such as stripes, stars and trees under a 2-colouring of the edges of a bipartite graph. We give the Ramsey numbers Rb(mP2, nP2), Rb(Tm, Tn), Rb(Sm, nP2), Rb(Tm, nP2) and Rb(Sm, Tn).
منابع مشابه
Zarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کاملThe Ramsey numbers of large trees versus wheels
For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.
متن کاملOn size multipartite Ramsey numbers for stars versus paths and cycles
Let Kl×t be a complete, balanced, multipartite graph consisting of l partite sets and t vertices in each partite set. For given two graphs G1 and G2, and integer j ≥ 2, the size multipartite Ramsey number mj(G1, G2) is the smallest integer t such that every factorization of the graph Kj×t := F1 ⊕ F2 satisfies the following condition: either F1 contains G1 or F2 contains G2. In 2007, Syafrizal e...
متن کاملRamsey and Turán-type problems for non-crossing subgraphs of bipartite geometric graphs
Geometric versions of Ramsey-type and Turán-type problems are studied in a special but natural representation of bipartite graphs and similar questions are asked for general representations. A bipartite geometric graphG(m,n) = [A,B] is simple if the vertex classes A,B of G(m,n) are represented in R2 as A = {(1, 0), (2, 0), . . . , (m, 0)}, B = {(1, 1), (2, 1), . . . , (n, 1)} and the edge ab is...
متن کاملThe Ramsey numbers for stripes and complete graphs 1
Lorimer, P.J. and W. Solomon, The Ramsey numbers for stripes and complete graphs 1, Discrete Mathematics 104 (1992) 91-97. The Ramsey numbers r(mK,, n,Pz, , n,P,), p > 2, are calculated for d m for each j.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EJGTA
دوره 1 شماره
صفحات -
تاریخ انتشار 2013